
Combinations of Analysis Techniques for Sound and
Efficient Software Verification

Habilitation Thesis Defense

Nikolai Kosmatov

Palaiseau, November 20th, 2018

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 1 / 44

Software analysis: from foundations to combinations
Theoretical foundations established in the 20th century:

I Undecidability of program analysis [Rice, 1953]

I Floyd-Hoare logic [Floyd, 1967][Hoare, 1969]

I Weakest precondition calculus [Dijkstra, 1975]

I Symbolic execution for testing [King, 1976]

I Abstract interpretation [P.& R. Cousot, 1977]

I Model-checking [Emerson, Clarke, 1980][Queille, Sifakis, 1982]

Efficient tools and convincing practical applications appeared later:

I PolySpace to detect Ariane 5 bug after 1996 [Deutsch, 2003]

I Astrée used by Airbus [Cousot, ESOP 2005]

I Fluctuat used by Airbus [Delmas, FMICS 2009]

I Caveat used by Airbus to certify A380 [Randimbivovolovna, FM’99]

I Sage widely used by Microsoft [Godefroid, NDSS 2008]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 2 / 44

Static vs. Dynamic analysis techniques

I for a long time, seen as orthogonal and used separately

I more recently, realization of potential synergy and complementarity

Static analysis

Analyzes the source code without
executing it

I Instructions reported as safe
are safe (complete)

I Detected potential errors
can be safe (imprecise)

Dynamic analysis

Executes the program on some
test data

I Detected errors are really
errors (precise)

I Cannot cover all executions
(incomplete)

This talk focuses on combinations of various analyses in Frama-C

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 3 / 44

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 4 / 44

Tool context: Frama-C, a platform for analysis of C code

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 5 / 44

Tool context: Frama-C, a platform for analysis of C code

A brief history
I 90’s: CAVEAT, Hoare logic-based tool for C code at CEA
I 2000’s: CAVEAT used by Airbus during certification process of the

A380 (DO-178 level A qualification)
I 2002: Why and its C front-end Caduceus (at INRIA)
I 2006: Joint project on a successor to CAVEAT and Caduceus
I 2008: First public release of Frama-C (Hydrogen)
I 2012: New Hoare-logic based plugin WP developed at CEA
I Today: Frama-C v.17 Chlorine

I Multiple projects around the platform
I A growing community of users. . .
I and of developers

I Used by, or in collaboration with, several industrial partners

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 6 / 44

Tool context: Frama-C, a platform for analysis of C code

Frama-C at a glance

I A Framework for Modular Analysis of C code

I Developed at CEA List

I Released under LGPL license

I Kernel based on CIL [Necula, CC 2002]

I ACSL annotation language
I Extensible plugin oriented platform

I Collaboration of analyses over same code
I Inter plugin communication through ACSL formulas
I Adding specialized plugins is easy

Publications: [SEFM 2012, FAC 2015]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 7 / 44

Tool context: Frama-C, a platform for analysis of C code

ACSL: ANSI/ISO C Specification Language

I Based on the notion of contract, like in Eiffel, JML

I Allows users to specify functional properties of programs

I Allows communication between various plugins

I Independent from a particular analysis

I Manual at http://frama-c.com/acsl

Basic Components

I First-order logic

I Pure C expressions

I C types + Z (integer) and R (real)

I Built-in predicates and logic functions particularly over pointers:
\valid(p) \valid(p+0..2), \separated(p+0..2,q+0..5),

\block_length(p)

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 8 / 44

http://frama-c.com/acsl

From testing to static analysis

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 9 / 44

From testing to static analysis

First activities at CEA: PathCrawler test generator

Symbolic Execution

Constraint solverConcrete Execution

Constraints of the new path to cover

Test data

Executed path

I Performs Dynamic Symbolic Execution (DSE)

I By Nicky Williams with B.Botella,M.Delahaye,N.K.,P.Mouy,M.Roger

I Uses code instrumentation, concrete and symbolic execution,
constraint solving (relies on COLIBRI solver by Bruno Marre)

I Sound and relatively complete: doesn’t approximate path constraints

My contributions: test generation strategies, interprocess communication,
output features, treatment of preconditions, integration into Frama-C
Publications: [ISSRE 2008, AST 2009, JFPC 2010, RV 2013]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 10 / 44

From testing to static analysis

PathCrawler-online testing service

Main author of PathCrawler-online in 2009–2010

I With interns A.Kouider, N.Dugué, and
later Richard Bonichon (author of the
new interface in 2011–2012)

I Detailed results: concrete & symbolic
outputs, path predicates, coverage...

I Challenge: executes users’ code

I Widely used for teaching in Paris,
Orléans, Orsay, Evry, Strasbourg,
Bourges, Toulouse. . . , but also in
China, Germany, USA, India, Iran,
Austria, Canada...

Publications: [SOSE 2013, CSTVA 2011, IGI Global 2013]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 11 / 44

From testing to static analysis

The SANTE approach: motivation and goals
Detection of runtime errors: two approaches

Static analysis:
abstract interpretation based

value analysis

Issue: leaves unconfirmed errors
that can be safe

Dynamic Analysis:
DSE based

test generation

Issue: cannot detect all errors
since test coverage is partial

Goal: Combine both techniques to detect runtime errors more efficiently

PhD work of Omar Chebaro in 2008-2011 (co-supervised with Alain
Giorgetti, Jacques Julliand)

Publications: [Chebaro et al, TAP 2009, TAP 2010, SAC 2012, ASEJ 2014]
Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 12 / 44

From testing to static analysis

SANTE: Methodology for detection of runtime errors

Program p

Value analysis

Program p, Alarms

Program slicing

Slice p′, Alarms

Test generation

Diagnostic

I Value analysis detects alarms

I Slicing reduces the program (w.r.t. one
or several alarms)

I Test generation (PathCrawler) on a
reduced program to diagnose alarms
(after adding error branches to trigger
errors)

I Various slicing options based on alarm
dependencies

I Diagnostic
I bug if a counter-example is generated
I if not, and all paths were explored, the

alarm is safe
I otherwise, unknown

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 13 / 44

From testing to static analysis

SANTE: Experiments

I 9 benchmarks with known errors (from Apache, libgd, . . .)

Alarm classification:

I all known errors found by SANTE

I SANTE leaves less unclassified alarms than VALUE or PathCrawler
alone

Program reduction:

I 32% in average, up to 89% for some examples

I program paths in counter-examples are in average 19% shorter

Execution time:

I Average speedup w.r.t. testing alone is 43% (up to 98% for some
examples)

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 14 / 44

From testing to static analysis

SANTE: Applications to security

Program p

Value & Taint analysis

Program p, Alarms

Program slicing

Slice p′, Alarms

Fuzz testing

Diagnostic

I Reused in EU FP7 project STANCE (CEA
List, Dassault, Search Lab, FOKUS,...)

I Taint analysis to identify most
security-relevant alarms

I Fuzz testing (Flinder tool) for efficient
detection of vulnerabilities

I Applied to the recent Heartbleed security
flaw (found in 2014 in OpenSSL)

Publication: [Kiss et al., HVC 2015]

I Another application (in EU project VESSEDIA) in progress

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 15 / 44

From testing to static analysis

SANTE: Selected Related Work

I Check’n’Crash: combines ESC/Java, random testing
JCrasher [Csalner et al, ICSE 2005]

I Daikon: detects likely invariants [Ernst et al., SCP 2007]

I DSD Crasher: combines Daikon, Check’n’Crash [Smaragdakis
et al, TAP 2007]

I Synergy, Blast, Yogi: combine testing and partition refinement
[Gulavani et al, FSE 2006][Beyer et al, STTT 2007]

I DyTa: follows the SANTE approach with CFG connectivity instead
of slicing [Ge et al, ICSE 2011]

I [Chistakis et al, FM 2012] consider unsound static analysis with
testing

I [Chimento et al, RV 2015] combine static analysis with runtime
verification

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 16 / 44

From testing to static analysis

Slicing: Soundness for verification

Research question: V&V on slices instead of the initial program

I If an error is found in a slice, is it present in the initial program?

I If there are no errors in a slice, what about the initial program?

Main results:

I a new soundness property of slicing
I a formal link between errors in the slice and the initial program

I an error in the slice can only be hidden in the init. program by an
erroneous or non-terminating stmt non-preserved in the slice

I formalization and proof in Coq

PhD work of Jean-Christophe Léchenet in 2015-2018 (co-supervised with
Pascale Le Gall)

Publications: [Léchenet et al, FASE 2016, FAC 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 17 / 44

From testing to static analysis

Towards generic slicing: Control dependencies

Research question: Efficient computation of control dependencies for a
language with unstructured control-flow [Danicic et al. TCS 2011]

Main results:

I Formalization of Danincic’s
algorithm in Coq

I a new, more efficient
algorithm to compute
control dependencies

I its formalization and proof
in Why3 0 2,000 4,000 6,000

0

20

40

60

|V |
ti
m
e(
s)

Danicic’s algorithm
Our algorithm

PhD work of Jean-Christophe Léchenet in 2015-2018 (co-supervised with
Pascale Le Gall)

Publication: [Léchenet et al, FASE 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 18 / 44

From executable specifications to counterexamples

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 19 / 44

From executable specifications to counterexamples

E-ACSL: Executable specifications and efficient runtime
assertion checking

I Very active research project

I With Julien Signoles, 2 postdocs Mickaël Delahaye, Kostyantyn
Vorobyov, 2 interns Guillaume Petiot, Arvid Jakobsson, PhD student
Dara Ly. . .

I My contributions: combined analyses using E-ACSL, design of
efficient memory models, detection of temoral errors, optimizations by
static analysis, evaluation, CRV competitions. . .

I Two patents on efficient shadow-memory based solutions for memory
monitoring (with K.Vorobyov, J.Signoles)

Publications: [SAC 2013, RV 2013, JFLA 2015, SAC 2015, SCP 2016,
ISOLA 2016, RV 2017, ISMM 2017, TAP 2018, HILT 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 20 / 44

From executable specifications to counterexamples

From ACSL to E-ACSL
ACSL was designed for static analysis tools only

I cannot execute some terms/predicates (e.g. unbounded
quantification)

I cannot be used by dynamic analysis tools (e.g. testing or monitoring)

E-ACSL: Executable subset of ACSL:

I it is verifiable in finite time, suitable for runtime assertion checking
I limitations: only bounded quantification, no axioms, no lemmas
I Includes builtin memory-related predicates, for a pointer p:

Builtin predicate Description

\valid(p) p is a valid pointer
\initialized(p) ∗p has been initialized
\block length(p) Length of p’s memory block
\base address(p) Base address of p’s memory block
\offset(p) Offset of p in its memory block

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 21 / 44

From executable specifications to counterexamples

E-ACSL2C: monitoring optimized by static analysis

E-ACSL2C is a runtime verification tool for E-ACSL specifications:

I it translates annotated program p into another program p′

I p′ exits with error message if an annotation is violated

I otherwise p and p′ have the same behavior

Goal: avoid the monitoring of irrelevant statements

I Not necessary to monitor all memory locations

Solution: A pre-analysis of the input program

I Backward data-flow analysis

I Over-approximates the set of variables that must be monitored to
verify memory-related annotations

I Identified irrelevant memory locations are not monitored

I Provides a significant speedup

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 22 / 44

From executable specifications to counterexamples

Modular Deductive Verification in a Nutshell

// Pref assumed
f(<args>){
code1;

// Preg to be proved
g(<args>);

// Postg assumed
code2;

}
// Postf to be proved

// Pref assumed
f(<args>){
code1;

// I to be proved

while(C){
// I ∧ C assumed

code3;
// I to be proved

}
// I ∧ ¬C assumed
code2;

}
// Postf to be proved

A proof failure can be due to various reasons!

For convenience, we say:
A subcontract of f is the contract of a called function or loop in f .

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 23 / 44

From executable specifications to counterexamples

Example: Several reasons for the same proof failure

/∗@ r e q u i r e s n>=0 && \ v a l i d (t + (0 . . n−1)) ;
a s s i g n s \noth ing ;
ensu re s \ r e s u l t != 0 <==>

(\ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [j] == 0) ;
∗/
i n t a l l z e r o s (i n t t [] , i n t n) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [j]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r (k = 0 ; k < n ; k++)

i f (t [k] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Can be proven
with Frama-C/WP

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 24 / 44

From executable specifications to counterexamples

Example: Several reasons for the same proof failure

/∗@ r e q u i r e s n>=0 && \ v a l i d (t + (0 . . n−1)) ;
a s s i g n s \noth ing ;
ensu re s \ r e s u l t != 0 <==>

(\ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [j] == 0) ;
∗/
i n t a l l z e r o s (i n t t [] , i n t n) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [j]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r (k = 0 ; k < n ; k++)

i f (t [k] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Postcondition
unproven. . .

. . . because
it is incorrect.

==

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 24 / 44

From executable specifications to counterexamples

Example: Several reasons for the same proof failure

/∗@ r e q u i r e s n>=0 && \ v a l i d (t + (0 . . n−1)) ;
a s s i g n s \noth ing ;
ensu re s \ r e s u l t != 0 <==>

(\ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [j] == 0) ;
∗/
i n t a l l z e r o s (i n t t [] , i n t n) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [j]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r (k = 0 ; k < n ; k++)

i f (t [k] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Postcondition
unproven. . .

. . . because
the code is incorrect.

0

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 24 / 44

From executable specifications to counterexamples

Example: Several reasons for the same proof failure

/∗@ r e q u i r e s n>=0 && \ v a l i d (t + (0 . . n−1)) ;
a s s i g n s \noth ing ;
ensu re s \ r e s u l t != 0 <==>

(\ f o r a l l i n t e g e r j ; 0 <= j < n ==> t [j] == 0) ;
∗/
i n t a l l z e r o s (i n t t [] , i n t n) {

i n t k ;
/∗@ l oop i n v a r i a n t 0 <= k <= n ;

l oop i n v a r i a n t \ f o r a l l i n t e g e r j ; 0<=j<k ==> t [j]==0;
l oop a s s i g n s k ;
l oop v a r i a n t n−k ;

∗/
f o r (k = 0 ; k < n ; k++)

i f (t [k] != 0)
r e t u r n 0 ;

r e t u r n 1 ;
}

Postcondition
unproven. . .

. . . because a loop
invariant is missing.

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 24 / 44

From executable specifications to counterexamples

The STADY approach: Motivation and goals

Bob, Software Engineer

Informal Specification

Code

Alice, Validation Engineer

Formal Specification Deductive Verification

Proof Failure

Code non-compliant to spec?
- error in the code?
- error in the spec?

Subcontract weakness?
- too weak loop invariant?
- too weak contract of a callee?

Prover incapacity?
- add assertions, lemmas...?
- use interactive proof?

Goals of STADY: a complete verification methodology to

I automatically and precisely diagnose proof failures,

I provide a counter-example to illustrate the issue

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 25 / 44

From executable specifications to counterexamples

STADY: Methodology for diagnosis of proof failures

I Define three kinds of proof failures:
I non-compliance (direct conflict betw. code and spec)
I subcontract weakness (too weak contract for some loop or callee)
I prover incapacity (the property holds, but is not proven)

I Perform dedicated instrumentation allowing to detect
non-compliances and subcontract weaknesses

I Apply DSE-based test generation (PathCrawler) to try to find a
counter-example and to classify the proof failure

I Indicate a more precise feedback (if possible, with a counter-example)
to help the user to understand and to fix the proof failure

PhD work of Guillaume Petiot in 2012–2015 (co-supervised with Alain
Giorgetti and Jacques Julliand), in collaboration with B.Botella, J.Signoles

Publications: [Petiot et al, TAP 2014, SCAM 2014, TAP 2016, FAC 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 26 / 44

From executable specifications to counterexamples

Instrumentation for non-compliance detection

/*@

*/

Typef g(...) {

code1;

}

→

Typef g(...) {

code1;

}

requires Preg;

ensures Postg;

fassert(Preg);

fassert(Postg);

Principle:

I translate annotations into C code, similarly to runtime assertion
checking, but in a way that DSE can trigger errors

I details in [Petiot et al, SCAM’14]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 27 / 44

From executable specifications to counterexamples

Instrumentation for subcontract weakness detection:
/*@

*/

Typeg g(...) {

code3;

}

Typef f(...) {

code1;

code2;

}

→

Typeg g_sw (...) {

...

return ret;

} // respects Postg
Typeg f(...) {

code1

code2;

}

assigns x1,..,xN;

ensures Postg;

g(Args);

x1 = NonDet();

xN = NonDet();

Typeg ret=NonDet();

fassume(Postg);

g_sw(Args);

I Principle: Replace the callee/loop code by the most general code
respecting its contract, then try to trigger errors with DSE

I requires (loop) assigns clauses
Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 28 / 44

From executable specifications to counterexamples

STADY: Initial experiments

I 26 annotated (provable) programs (from [Burghardt, Gerlach])

I 2036 mutants generated (erroneous code, erroneous or missing
annotation), 1574 unproven

I STADY is applied to classify proof failures

Alarm classification:

I STADY classified ∼95.5% proof failures

Execution time: comparable to WP

I WP takes in average 2.2 sec. per mutant (13 sec. per unproven
mutant)

I STADY takes in average 2.2 sec. per unproven mutant

Partial coverage:

I Testing with partial coverage remains efficient in STADY

Complex counterex. can be found as well: STADY found a counterex.
with runLen: 471,360,70,111,41,71 for Timsort [de Gouv, CAV 2015]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 29 / 44

From executable specifications to counterexamples

STADY: Selected related work

I SPARK extracts counterexamples from a solver counter-model
[Dailler et al, J. Log. Alg. Meth. 2018]

I CBMC also exploits counter-models [Groce et al, CAV 2014]

I Eiffel uses function inlining and loop unrolling [Tschannen et al.,
VSTTE 2013]

I Dafny follows an approach similar to STADY for non-compliances
[Christakis et al, TACAS 2016]

I Proof tree analysis for KeY [Gladisch, TAP 2009][Engel, Hähnle,
TAP 2007]

I KeyTestGen generates tests from partial proofs in KeY [Ahrendt
et al, KeyBook 2016]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 30 / 44

A proof-friendly view of test coverage criteria

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 31 / 44

A proof-friendly view of test coverage criteria

Support of advanced test coverage criteria
I Very active research project
I With S.Bardin, V.Prevosto, N.Williams, B. Marre, L.Correnson

(CEA), D.Mentré (MERCE), M.Papadakis (Luxembourg). . .
I With 2 postdocs Mickaël Delahaye, Michaël Marcozzi, an intern

Thibault Martin

Main results:
I Label specification mechanism to express a large range of coverage

criteria
I An efficient test generation technique for labels
I The LTest toolset for labels: annotation, test generation, detection of

infeasible test objectives, coverage evaluation
I HTOL (Hyperlabel Test Objective Language), the recent extension of

labels supporting hyperproperties (MCDC), dataflow criteria...

Publications: [ICST 2014, TAP 2014, ICST 2015, ICST 2017a, ICST
2017b, ICSE 2018, ISOLA 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 32 / 44

A proof-friendly view of test coverage criteria

Labels, a mechanism to specify test objectives

Basic definitions Example:

Given a program P, a label l is a pair
(loc, ϕ), where:

I ϕ is a well-defined predicate at
location loc in P

I ϕ contains no side-effects

statement_1;

// l1: x==y

// l2: !(x==y)

if (x==y && a<b)

{...};

statement_3;

Benefit: express a large class of coverage criteria, allow for their efficient
and generic support

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 33 / 44

A proof-friendly view of test coverage criteria

LTest: a label-oriented test generation

DSE?: an efficient test generation technique for labels

I Tight instrumentation totally prevents “complexification”

I Iterative Label Deletion: discards some redundant paths

I Both techniques can be implemented in a black-box manner

DSE? dramatically improves test generation performances

I APex reports an average overhead >272x [Jamrozik et al, TAP 2013]

I DSE? leads to an average overhead of 2.4x [Bardin et al, ICST 2014]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 34 / 44

A proof-friendly view of test coverage criteria

LTest: detection of infeasible test objectives

Coverage criteria (decision, mcdc, etc.) play a major role in testing

The enemy: Uncoverable test objectives

I waste generation effort, imprecise coverage ratios

I cause: structural coverage criteria are ... structural

I detecting uncoverable test objectives is undecidable

Recognized as a hard and important issue in testing

Idea. The test objective
“reach location loc and satisfy
predicate p” is uncoverable

⇔ the assertion assert (¬p);
at location loc is valid

Apply static analysis techniques to show validity of assertions

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 35 / 44

A proof-friendly view of test coverage criteria

LTest: Experiments with detection of infeasible labels

I automatic, sound and generic method

I new combination of existing verification techniques
I experiments for 12 programs and 3 criteria (CC, MCC, WM):

I strong detection power (95%),
I reasonable detection speed (≤ 1s/obj.),
I test generation speedup (3.8x in average),
I more accurate coverage ratios (99.2% instead of 91.1% in average,

91.6% instead of 61.5% minimum)

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 36 / 44

A proof-friendly view of test coverage criteria

PathCrawler/LTest: Towards an industrial adoption

MERCE, a research branch of Mitsubishi Electric, developed additional
modules for automatic annotation of labels, generation of stubs,
generation of test sheets targeting their industrial needs

MERCE evaluated the complete automatic tool

I on industrial code of 80,000 lines, 1,300 functions in 150 files

I the tool was able to parse and annotate 100% of the files and
generate test cases for 86% of functions

I the generation took < 1 day instead of ∼230 days manually

Those very good results are very encouraging
for pushing the technology in business units

Publication: [Bardin et al, ISOLA 2018]

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 37 / 44

Conclusion and perspectives

Outline

Tool context: Frama-C, a platform for analysis of C code

From testing to static analysis

From executable specifications to counterexamples

A proof-friendly view of test coverage criteria

Conclusion and perspectives

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 38 / 44

Conclusion and perspectives

Other activities
Support of relational properties (in deduct.verif., testing, RAC, STADY)

I Relies on self-composition. Used in the EU VESSEDIA project.

PhD work of Lionel Blatter since 2015 (co-supervised with Pascale Le Gall,
Virgile Prevosto). Publications: [TACAS 2017, TAP 2018].

Deductive verification of concurrent programs

I Relies on a code transformation simulating interleavings.

PhD work of Allan Blanchard in 2012–2016 (co-supervised with Frédéric
Loulergue, Matthieu Lemerre). Publications: [FMICS 2015, SCAM 2016,
VPT 2017, CSTVA 2016, COMPLAN 2018].

Verification of IoT software (in EU projects DEWI and VESSEDIA)

I Several modules of Contiki OS verified. Some errors detected.

In collaboration with 2 interns Frédéric Mangano, Alexendre Peyrard, and
Allan Blanchard, Simon Duquennoy (INRIA), Frédéric Loulergue (NAU),
Shahid Raza (RISE). [CRISIS 2016, RedIOT 2018, TAP 2018, NFM 2018].

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 39 / 44

Conclusion and perspectives

Conclusion

I Combining Static and Dynamic analyses can be beneficial for various
domains of software verification:
I detection of runtime errors and security vulnerabilities,
I deductive verification,
I runtime assertion checking,
I test generation, . . .

I Both ways: static helps dynamic and dynamic helps static

I Frama-C provides a rich and extensible framework for combined
analyses

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 40 / 44

Conclusion and perspectives

Challenges for combinations of analyses
Efficiency (in a large sense)
I Solving the target program more efficiently than each of the

combined techniques
I Criteria include analysis time, number of detected defects, precision

Soundness
I Assumptions and conclusions of the combined techniques should be

properly taken into account
I A (semi-)formal justification of soundness is desirable

Specification mechanisms
I Analysis should rely on well-defined and sufficiently expressive

specification mechanisms
I New or adapted specification mechanisms can become necessary

Practical applicability
I Requires to carefully take into account the needs of the users, to

communicate, to accompany in evaluation and application of tools
Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 41 / 44

Conclusion and perspectives

Perspectives:
A generic program slicer for unstructured programs

I Providing a dedicated slicer for a given language can be difficult

I Especially for unstructured control-flow (goto, break)

Goals:

I Create a generic program slicer in the presence of errors and
nontermination

I Use a CFG-based program representation

I Connect to various programming languages

I Formalize and prove the core algorithm

I Use other analyses (value analysis) to increase precision

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 42 / 44

Conclusion and perspectives

Perspectives:
Formal Proof of Soundness of Combined Analyses

I Previous work demonstrated the need of formal proof of soundness

I This is particularly important for combined analyses

Goals:

I A Coq framework of certified C analyzers sharing a unique semantics
I Mechanized formal proof of combined analyses

I e.g. SANTE, STADY, E-ACSL2C, LTest. . .
I First step: Ph.D. work of Dara Ly in progress for E-ACSL2C

I Use a CompCert semantics of C

Some of these objectives are part of the ANR CERTICAT project proposal

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 43 / 44

Conclusion and perspectives

Perspectives:
Support for advanced test coverage criteria

I Previous work demonstrated the interest of generic specification
mechanisms of coverage criteria (labels, hyperlabels...)

I However, hyperlabels are not yet fully supported

Goals:

I Extended support for hyperlabels in LTest (for test generation,
detection of infeasible objectives, test assessment)

I Investigate extensions of HTOL to support yet unformalized
industrially relevant criteria, and further push their industrial
applications

I Study the usage of coverage criteria in a continuous development
cycle

A 3-year international ANR-FNR (France-Luxembourg) grant of 760,000e
for SATOCROSS project was allocated to support this work direction

Nikolai Kosmatov Habilitation Thesis Defense 2018-11-20 44 / 44

	Tool context: Frama-C, a platform for analysis of C code
	From testing to static analysis
	From executable specifications to counterexamples
	A proof-friendly view of test coverage criteria
	Conclusion and perspectives

